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thermodynamiquement corrects des milieux continus
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What is a good mathematical model ?

Physically reasonable

Mathematically wellposed

Thermodynamically consistent
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About thermodynamics

Thermodynamics is a funny subject. The first time you go through it, you
don’t understand it at all. The second time you go through it, you think
you understand it, excepting for one or two small point. The third time
you go through it, you know you don’t understand it, but by that time you
are so used to the subject, it doesn’t bother you any more...

La thermodynamique est amusante. La première fois que vous l’étudiez,
vous ne la comprenez pas du tout. La seconde fois que vous l’étudiez, vous
pensez l’avoir comprise, mis à part un ou deux points. La troisième fois que
vous l’étudiez, vous savez pertinemment que vous ne la comprenez pas,
mais vous vous y êtes tellement habitués que cela ne vous dérange plus...

Arnold Johannes Wilhelm SOMMERFELD (1868 — 1951)
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What we learned from the thermodynamics (or
thermostatics) ?

Paul Germain, Cours de Mécanique des Milieux Continus, Théorie
générale, Masson et Cie, 1973 (Chapter concerning Constantin
Carathéodory’s axioms of thermodynamics).
A system is characterized by n + 1 physical variables
χ = (χ0, χ1, χ2, ..., χn) ∈ D ⊂ E , dim(E) = n + 1. Let E : D → R be the
equation of state called internal energy, δW =

∑n
i=0 Aidχi and

δQ =
∑n

i=0 Bidχi be two 1 - differential forms, called infinitesimal work
done on the system and infinitesimal heat supplied to the system,
respectively.
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The first law of thermodynamics

I. For a closed system (no exchange of the matter with surroundings) one
has the Gibbs identity :

dE = δW + δQ. (1)
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The second law of thermodynamics (by Constantin
Carathéodory, 1909)

II. In any neighborhood of arbitrary state χ there are states χ
′

which can
not be adiabatically accessible (i.e. without exchange of heat with
surroundings) from χ.

Cela implique l’existence θ and η (C. Carathéodory, 1909, P. Germain,
1973) :

δQ = θdη. (2)

and the inequality :
dη ≥ 0 (3)

for any adiabatically isolated system. The equality takes place only for
reversible changes.
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Equations of state for compressible fluids

δW = −pdτ, θdη = dε+ pdτ ; ε = ε(τ, η).

For a given ε(τ, η) it allows us to obtain the definition of the temperature
θ and pressure p in the form

θ =
∂ε

∂η
; p = −∂ε

∂τ
.
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Equations of state for compressible fluids : examples

In practice, we can not obtain this function directly from experiments. We
can only find intermediate equations of state : p(τ, θ), ε(τ, θ), and then
derive ε(τ, η).
Polytropic gas.

p =
Rθ

τ
, ε = cvθ, R = const, cv = const.

Van der Waals gas.

p =
Rθ

τ − b
− a

τ2
, ε = −a

τ
+ cvθ,

R = const, cv = const; a = const, b = const.
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Polytropic gas

The energy of the polytropic gas is convex : εττ > 0, εττεηη − (εητ )2 > 0.
This is not the case of the Van der Waals equation of state.
For convex functions one can play with the Legendre transformation. I will
consider only C 2 functions.
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Legendre transformation

Let e(u) be convex, i.e. its Hessian matrix is positive definite. The
Legendre transform e∗(v) of e(u) is a function defined as

e∗(v) = u · v − e(u),

where vector u is implicitly defined by the equation

v = ∇ue(u).

One also has :
u = ∇ve

∗(v), I = e∗′′(v)e ′′(u).

The Legendre transform e∗(v) is a convex function of v. The Legendre
transformation is involutive :

e∗∗ = e.

10 / 60



Solid mechanics

In solid mechanics one usually works with the Helmholz free energy
ψ = ε− θη. Thinking about applications related to the wave propagation
in fluids and solids where the materials behave rather isentropically than
isothermally, I will use everywhere the energy as a function of the entropy
η and deformation gradient F : ε = ε(F, η).
It cannot be a convex function of F : ε = ε(η,C), C = FTF is the right
Cauchy-Green deformation tensor.
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Rank-one convexity

The specific energy is rank-one convex, i.e. the function

ε̃(s) = ε(F + sn⊗m)

is convex with respect to s for any n and m (Ball, Dafermos, Dacorogna,
...). The rank one convexity is equivalent the ellipticity condition
(Legendre - Hadamard condition) in statics, or the hyperbolicity condition
(in dynamics). We will see this later...
It is rather difficult (if not impossible) to use this definition in practice !
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Solid mechanics : the case of isotropic solids

ε = ε(η, I1, I2, I3),

or
ε = ε(η, J1, J2, J3), Jn = tr(Ck) = tr(Bk), k = 1, 2, 3.

C = FTF
(
B = FFT

)
is the right (left) Cauchy-Green deformation tensor.

One has
∂Jk
∂C

= kCk−1.
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Example : Blatz-Ko equation of state

ε = ε(I1, I2, I3) =
µ

2

(
I2(C)

I3(C)
+ 2
√
I3(C)− 5

)
.

It is not rank-one convex.
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Dacorogna, 2001, Discret and Continuous Dynamical
Systems- Series B, v.1, N2, 257-263 (Proposition 7).

Let ki , i = 1, 2, 3, be singular values of F, and ε = ε(k1, k2, k3). Then ε is
rank-one convex, if the following conditions hold :

εii ≥ 0,

kiεi − kjεj
ki − kj

≥ 0, ki 6= kj , 1 ≤ i < j ≤ 3,

√
εiiεjj

2
+ εij +

εi − εj
ki − kj

≥ 0, ki 6= kj , 1 ≤ i < j ≤ 3,

√
εiiεjj

2
− εij +

εi + εj
ki + kj

≥ 0, ki 6= kj , 1 ≤ i < j ≤ 3.

Here εi =
∂ε

∂ki
etc.
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Mathematically well-posed models

1. Existence
2. Uniqueness
3. Continuous dependence on the initial data
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Hadamard’s example

Cauchy Problem

ut + vx = 0,
vt − ux = 0,

u(0, x) =
sin(nx)

n2
, v(0, x) =

cos(nx)

n2
.

Solution

u(t, x) =
sin(nx)

n2
ent , v(t, x) =

cos(nx)

n2
ent .
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Algebraic friction doesn’t help !

ut + vx = −Ku,
vt − ux = −Kv , K > 0.

This does not help !

u′ = eKtu, v ′ = eKtv .
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Hyperbolic systems in a nutshell

1D hyperbolic systems of equations, characteristics, Riemann
invariants, linearly degenerate fields, genuinely nonlinear fields,
examples, fields which are not genuinely nonlinear.

Rankine-Hugoniot relations, applications to the Euler equations of
compressible fluids, admissibility of shock waves and the second law
of thermodynamics

Riemann problem, applications to the Euler equations
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Hyperbolic equations : multiD case

Symmetric t-hyperbolic in the sense of Friedrichs systems (Kurt Otto
Friedrichs, 1901-1982)

AUt+BUx+CUy+DUz = 0, U ∈ Rn, A = AT > 0, B = BT , C = CT , D = DT .

The Cauchy problem
U(0, x) = U0(x)

is well posed for small time.
1D hyperbolic models can always be written in symmetric form (a proof
will be given).
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Physically reasonable : Hamilton’s principle

Definitions

E = T + W – total energy

T – kinetic energy

W – potential energy

L = T −W – Lagrangian

a =

∫ t1

t0

∫
D(t)

LdDdt - Hamilton’s action

Hamilton’s principle
The governing equations are stationary ’points’ of Hamilton’s action
(under certain constraints to be defined).
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Constraints

The constraints should be integrable in the reference configuration !

Conservation of the mass

Conservation of the entropy

...
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Advantages

Only one scalar function (Lagrangian) determines the governing
equations

Conservation laws are natural (Noether theorem)

Invariance properties of governing equation are also determined by the
Lagrangian

One can naturally obtain the Rankine-Hugoniot relations
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Motion and virtual motion

X

x

D0

Dt

x =�(t,X ,�)

x = �(t,X )

�x

1
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Motion and virtual motion

x = ϕ(t,X), x =
(
x1, x2, x3

)T
, X =

(
X 1,X 2,X 3

)T
,

x = Φ(t,X, λ),

δx(t,X) = ∂
∂λΦ(t,X, λ)|λ=0,

ζ(t, x) = δx
(
t,ϕ−1(t, x)

)
.
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Lagrangian and Eulerian variations

f̃ (t,X, λ), f̂ (t, x, λ).

δ̃f = δ̂f +∇f · δx.
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Lagrangian variations

Berdichevskii, V. L. (2009), SG (2011)

δ̃ρ = −ρdiv(ζ),

δ̃η = 0, δ̃F−T = −
(
∂ζ
∂x

)T
F−T ,

δ̃u = ∂δx
∂t .
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Remark

F−T =
(
e1, e2, e3

)
, eβ = ∇X β.

We call eβ curvilinear cobasis (ot simply cobasis), which is dual to a
natural curvilinear basis

eβ =
∂x

∂X β
.

One has obviously
curleβ = 0.

The Lagrangian variation of eβ is :

δ̃eβ = −
(
∂ζ

∂x

)T

eβ.
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Finger tensor as a measure of deformation for isotropic
solids

G = B−1 = F−TF−1 =
3∑

i=1

eβ ⊗ eβ.

constX =β

βeβe

1e

2e3e

1e

2e

3e
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Eulerian variations

δ̂ρ = −div(ρζ),

δ̂η = −∇η · ζ, δ̂eβ = −
(
∂ζ
∂x

)T
eβ −

(
∂eβ

∂x

)
ζ,

δ̂u = Dζ
Dt −

∂u
∂xζ.
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How to obtain the equations of motion ?

δa =

∫ t1

t0

∫
D(t)

M · ζdD dt = 0.

It implies
M = 0.
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Euler equations of compressible fluids

T =

∫
Dt

ρ
‖u‖2

2
dD

W =

∫
Dt

ρε (ρ, η) dD.

Constraints

ρt + div(ρu) = 0, (ρη)t + div(ρηu) = 0.

Equations
(ρu)t + div (ρu⊗ u + pI) = 0.

The convexity of the specific energy ε(τ, η), τ = 1/ρ implies the
hyperbolicity.
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Euler equations of compressible fluids : conservation laws

ρt + div(ρu) = 0,

(ρu)t + div (ρu⊗ u + pI) = 0,(
ρ

(
|u|2

2
+ ε

))
t

+ div

(
ρu

(
|u|2

2
+ ε

)
+ pu

)
= 0,

(ρη)t + div(ρηu) = 0.
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Theorem of Godunov-Friedrichs-Lax

Let a system of conservation laws

ut +
n∑

i=1

(ψi (u))xi = 0

admits the additional conservation law

et +
n∑

i=1

(fi (u))xi = 0,

wher the function e(u) is convex. Then the system can be written as a
symmetric t-hyperbolic system in the sense of Friedrichs.
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Theorem of Godunov-Friedrichs-Lax

Proof The compatibility condition yields :

∂e

∂u

∂ψi

∂u
=
∂fi
∂u
.

Let
e∗(v) = v · u− e(u), v = ∇ue, f ∗i (v) = v ·ψi − fi .

Then

(∇ve
∗)t +

n∑
i=1

(∇vf
∗
i )xi = 0
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Applications to the Euler equations of compressible fluids

E (ρ, ρu, ρη) = ρ

(
|u|2

2
+ ε

)
=

(
(ρ|u|)2

2ρ
+ ρε

(
1

ρ
,
ρη

ρ

))
.

E (ρ, ρu, ρη) is convex if and only if |u|2/2 + ε(τ, η) is convex with respect
to u, τ, η.
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Hyperelastic solids

T =

∫
Dt

ρ
‖u‖2

2
dD

W =

∫
Dt

ρε (F, η) dD, F =
∂x

∂X
, F−T =

(
e1, e2, e3

)
, eβ = ∇xX

β.

Hyperelastic isotropic solids

ε (F, η) = ε (J1, J2, J3, η) , Jk = tr
(

Gk
)
, G =

(
FFT

)−1
, k = 1, 2, 3.
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Constraints

ρt + div(ρu) = 0,

(ρη)t + div(ρηu) = 0,

eβt +
(
∂eβ

∂x

)T
u +

(
∂u
∂x

)T
eβ = 0, curleβ = 0, β = 1, 2, 3

Equation for eβ comes from

∂X β

∂t
+ u · ∇X β = 0.
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Isotropic hyperelastic solids

(ρu)t + div (ρu⊗ u− σ) = 0.

Stress tensor :

σ = −2ρ
∂ε

∂G
G = −2ρG

∂ε

∂G
.

Separable form that matches perfectly with both solids and fluids :

ε = εh(τ, η) + εe(g),

εe(g) = εe(j1, j2), jk = tr(gk), g =
G

|G|1/3
, G =

3∑
β=1

eβ ⊗ eβ,

σ = −pI + S, p = ρ2
∂εh

∂ρ
, S = −2ρ

∂εe

∂G
G.
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Isotropic hyperelastic solids

Let εe(j1, j2). Then

S = −2ρ
∂ee

∂G
G = −2ρ

(
∂ee

∂j1

(
g − j1

3
I

)
+ 2

∂ee

∂j2

(
g2 − j2

3
I

))
.
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Criterion of hyperbolicity for a general stored specific
energy

Theorem The equations are hyperbolic, if and only if the specific energy is
rank - one convex (cf. C. Dafermos).
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Polyconvexity et symmetrization

Let ε(F, η). Consider ε = E(|F|,Cof F,F, η), Cof F =
F−T

|F|
.

Theorem (T. Qin, D. H. Wagner) Let E(|F|,Cof F,F, η) be a convex
function of its arguments (polyconvexity condition ; polyconvexity implies
rank-one convexity). Then the equations for hyperelasticity can be
rewritten as a symmetric-t hyperbolic system.

Remarks

To find a polyconvex function from a given function is not an obvious
exercise.

In practice, we need only hyperbolicity, and not symmetric t -
hyperbolic forms.

This is a system of 23 scalar equations ! Difficult to solve ? Can we do
better at least for isotropic hyperelastic solids ?
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Back to the hyperelasticity

ρt + div(ρu) = 0,
(ρu)t + div (ρu⊗ u− σ) = 0,

(ρη)t + div(ρηu) = 0,

eβt +
(
∂eβ

∂x

)T
u +

(
∂u
∂x

)T
eβ = 0, curleβ = 0, β = 1, 2, 3.

Separable form that matches perfectly with both solids and fluids :

ε = εh(τ, η) + εe(j1, j2),

jk = tr(gk), g =
G

|G|1/3
, G =

3∑
β=1

eβ ⊗ eβ.

σ = −pI+S, S = −2ρ
∂ee

∂G
G = −2ρ

(
∂ee

∂j1

(
g − j1

3
I

)
+ 2

∂ee

∂j2

(
g2 − j2

3
I

))
.
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Nonconservative form

A non-conservative system is (ρ is considered as an independent variable) :

∂ρ

∂t
+5ρ · u + ρdivu = 0,

∂eβ

∂t
+
∂eβ

∂x
u +

(
∂u

∂x

)T

eβ = 0,

∂u

∂t
+
∂u

∂x
u +
5p

ρ
− divS

ρ
= 0,

∂η

∂t
+5η · u = 0

with

p = ρ2
∂eh (ρ, η)

∂ρ
, S =− 2ρ

(
∂ee

∂j1

(
g − j1

3
I

)
+ 2

∂ee

∂j2

(
g2 − j2

3
I

))
.
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Rotational invariance

Theorem The equations are invariant under rotations :

t ′ = t, x′ = Ox, u′ = Ou,
(

eβ
)′

= Oeβ,

ρ′ = ρ, η′ = η.

where O is any element of SO(3).
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General definition of hyperbolicity

∂U

∂t
+ Dx

∂U

∂x
+ Dy

∂U

∂y
+ Dz

∂U

∂z
= 0,

where Dx ,Dy ,Dz are 14x14 matrices. Let us consider a smooth
hypersurface h (t, x , y , z) = 0. We denote

τ =
∂h

∂t
, ξ =

∂h

∂x
, η =

∂h

∂y
, ζ =

∂h

∂z
.

The hypersurface is characteristic if

det (τ I + ξDx + ηDy + ζDz) = 0.

The system (46) is t−hyperbolic, if the eigenvalues τ are real and the
matrix ξDx + ηDy + ζDz is diagonalizable for any (ξ, η, ζ)T .
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The hyperbolicity condition is thus reduced to 1D case due to the
rotational invariance.
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We present F−1 in the form

F−1 = (a,b, c) ,

i.e. a,b, c are the columns of F−1. Let us introduce the angles between
vectors :

a · b
‖a‖ ‖b‖

= X ,
a · c
‖a‖ ‖c‖

= Y ,
b · c
‖b‖ ‖c‖

= Z .

а
b

c

X

YZ
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Incompresibility condition

The condition detF = 1 can be written as

1 = det
(
F−1

)
= a· (b∧c)

=
(
‖b‖2 ‖c‖2 − (b · c)2

)
‖a‖2

+
(

(b · c) (a · c)− (a · b) ‖c‖2
)

(a · b)

+
(

(a · b) (b · c)− (a · c) ‖b‖2
)

(a · c) .

Or

X 2 + Y 2 + Z 2 − 2XYZ = 1− 1

‖a‖2 ‖b‖2 ‖c‖2
< 1.

The inequality is a convex domain in R3 bounded by the Cayley surface.
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Cayley surface
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Theorem (S. Ndanou, N. Favrie, SG, 2014, J. Elasticity) Consider
isotropic solids with the specific store energy in separable form

e (G, η) = eh (ρ, η) + ee (j1, j2) .

The volume shear energy is :

E = ∆ee , ∆ = det
(
F−1

)
.

Let E ′′ be the Hessian matrix of E with respect to a,

M =
F−TE

′′
F−1

∆
, p = ρ2

∂eh

∂ρ
.

Suppose that

c2 = ∂p
∂ρ > 0, ∂p

∂η > 0,

M ≥ 0 for all angles (X,Y,Z) inside the domain having the Cayley
surface as a boundary.

Then the equations of hyperelasticity are hyperbolic.
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Example

SG, Ndanou, Hank, 2016, J. Elasticity

ee(j1, j2) =
µ

4ρ0

(
1 + a

3
(j2 − 3) +

1− 2a

3

(
j21 − j2 − 6

))
, −1 ≤ a ≤ 0.5.

a = −1 corresponds to the Neohookean materials, ee =
µ

2ρ0
(i1 − 3),

i1 = tr

(
B

|B|1/3

)
.

For small deformations the Hooke law is valid for any values of a.
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Visco-plasticity

Plasticity as a relaxation phenomenon (Perzyna’s model)

Deβ

Dt
+

(
∂u

∂x

)T

eβ =
ãSeβ

τrel
, β = 1, 2, 3,

D

Dt
=

∂

∂t
+ u · ∇,

DG

Dt
+ G

∂u

∂x
+

(
∂u

∂x

)T

G =
2ãGS

τrel
, 2ã =

1

(S : S)1/2
,

1

τrel
=


1
τ0

(
S:S− 2

3
σ2
Y

σ2
Y

)n

if
S:S− 2

3
σ2
Y

σ2
Y

> 0

0, if
S:S− 2

3
σ2
Y

σ2
Y

≤ 0
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Conservation of mass, entropy inequality and shear stresses
decrease

The equations are compatible with the mass conservation law

The equations are compatible with the entropy inequality

The intensity of shear stresses decays during the relaxation (Maxwell
type model)

54 / 60



Conservation of mass

Let ρ0 be a function conserving along trajectories :

Dρ0
Dt

= 0.

Then

Dρ

Dt
=

D
(
ρ0 |G|1/2

)
Dt

= ρ0
D |G|1/2

Dt
=
ρ0
2
|G|−1/2 tr

(
∂ |G|
∂G

DG

Dt

)

=
ρ0
2
|G|−1/2 tr

(
|G|G−1

(
−G

∂v

∂x
−
(
∂v

∂x

)T

G +
2ãSG

τrel

))

=
ρ

2
tr

(
−∂v

∂x
− G−1

(
∂v

∂x

)T

G− 2ãS

τrel

)
= −ρdivv.
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Entropy inequality

The energy equation is equivalent to

0 = ρ
De

Dt
− tr

(
σ
∂v

∂x

)

= ρ
∂e

∂η

Dη

Dt
+ ρtr

(
∂e

∂G

(
−G

∂v

∂x
−
(
∂v

∂x

)T

G +
2ãSG

τrel

))
− tr

(
σ
∂v

∂x

)
=

= ρ
∂e

∂η

Dη

Dt
− ã

τrel
tr

(
−2ρ

∂e

∂G
GS

)
= ρθ

Dη

Dt
− ã

τrel
tr (σS)

Hence

ρθ
Dη

Dt
=

ã

τrel
S : S ≥ 0.
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Singular value decomposition

F−T = UKVT , UTU = I, VTV = I, K =

 k1 0 0
0 k2 0
0 0 k3


The singular values kα are related to the eigenvalues of G denoted by κα

κα = k2α
Relaxation equation

dκα
dt

=
2ã

τrel
καSα.

It admits the Lyapunov function L = S : S in the case of a one parameter
family of equations of state presented before.
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Lyapunov function

In terms of singular values ki of F−1 one has :

dkβ
dt

= ã
Sβkβ
τrel

, β = 1, 2, 3.

One has the first integral :

k1k2k3 = const.

Consider the materials with energy ee =
µ

8ρ0
(j2 − 3).

Sβ = −µ
2

ρ

ρ0

(
k4β

(k1k2k3)
4
3

− 1

3

∑
α

k4α

(k1k2k3)
4
3

)
.

Hence

dL

dt
=

d

dt

∑
β

S2
β = 2

∑
β

Sβ
dSβ
dt

= −µ ρ
ρ0

∑
β

Sβ
4k3β

(k1k2k3)
4
3

dkβ
dt
≤ 0.
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Lyapunov function

Remark The yield surface is attained in finite or infinite time depending
on the exponent n in the definition of the relaxation time.
Remark In severe conditions the deviatoric part of the stress tensor can be
neglected and we can take Y = 0. In this particular case formulas for the
relaxation time can be found in Godunov and Romenskii (2002).
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Solid-fluid interaction

Idea : to construct a multi-phase model from elementary “bricks” :
hyperelastic solids and compressible fluids by Hamilton’s principle.
The equation of state in separable form is thus very useful !
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